Record Information
Version1.0
Creation Date2016-11-21 20:29:57 UTC
Update Date2016-11-21 20:29:57 UTC
Accession NumberCHEM055742
Identification
Common Name1,2,3,4-tetramethylbenzene
ClassSmall Molecule
DescriptionA tetramethylbenzene that consists of benzene substituted by methyl groups at positions 1, 2, 3 and 4.
Contaminant Sources
  • Sludge Chemicals
Contaminant TypeNot Available
Chemical Structure
Thumb
Synonyms
ValueSource
PrehnitolChEBI
Chemical FormulaC10H14
Average Molecular Mass134.218 g/mol
Monoisotopic Mass134.110 g/mol
CAS Registry NumberNot Available
IUPAC Name1,2,3,4-tetramethylbenzene
Traditional Name1,2,3,4-tetramethylbenzene
SMILES[H]C1=C([H])C(=C(C(=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H])C([H])([H])[H]
InChI IdentifierInChI=1S/C10H14/c1-7-5-6-8(2)10(4)9(7)3/h5-6H,1-4H3
InChI KeyUOHMMEJUHBCKEE-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassNot Available
Direct ParentBenzene and substituted derivatives
Alternative Parents
Substituents
  • Monocyclic benzene moiety
  • Aromatic hydrocarbon
  • Unsaturated hydrocarbon
  • Hydrocarbon
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginNot Available
Cellular LocationsNot Available
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateNot Available
AppearanceNot Available
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.031 g/LALOGPS
logP4.07ALOGPS
logP4.03ChemAxon
logS-3.6ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity46.22 m³·mol⁻¹ChemAxon
Polarizability17.02 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-4900000000-28da1a5b7cbbccda1f38Spectrum
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-000i-0900000000-72f3f4dc86cbc594259eSpectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-4900000000-28da1a5b7cbbccda1f38Spectrum
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-000i-0900000000-72f3f4dc86cbc594259eSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-001i-3900000000-74a8e03648e32bae639eSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0900000000-4611abcb869468b1fa70Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0900000000-06a4fe1a9da3ac5427c4Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0v00-9300000000-f3cb280395f8494e693cSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-05d9aa7c63c8c1b8b31eSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-0900000000-19fdd4802bab4898a43fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00lr-2900000000-974e18eb3001abf2957eSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0019-5900000000-10777b22ab7f07472f40Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-001i-9500000000-07776fd135790c887320Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-004i-9100000000-98b28b6b012c48e62514Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-f5fa2e4eafb73a2ce5efSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-0900000000-f5fa2e4eafb73a2ce5efSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-001i-2900000000-4ca7c509cbbe24c88488Spectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Not Available
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB0059823
FooDB IDNot Available
Phenol Explorer IDNot Available
KNApSAcK IDNot Available
BiGG IDNot Available
BioCyc IDNot Available
METLIN IDNot Available
PDB IDNot Available
Wikipedia LinkTetramethylbenzenes
Chemspider IDNot Available
ChEBI ID38997
PubChem Compound ID10263
Kegg Compound IDNot Available
YMDB IDYMDB16075
ECMDB IDNot Available
References
Synthesis ReferenceNot Available
MSDSNot Available
General References
1. https://www.ncbi.nlm.nih.gov/pubmed/?term=755669
2. Lee GW, Lee SK: Observation of vibronic emission spectrum of jet-cooled duryl radical in corona excitation. J Chem Phys. 2007 Jun 7;126(21):214308.
3. Baker MV, Bosnich MJ, Brown DH, Byrne LT, Hesler VJ, Skelton BW, White AH, Williams CC: Azolium-linked cyclophanes: a comprehensive examination of conformations by 1H NMR spectroscopy and structural studies. J Org Chem. 2004 Oct 29;69(22):7640-52.
4. Sousa JP, Brancalion AP, Souza AB, Turatti IC, Ambrosio SR, Furtado NA, Lopes NP, Bastos JK: Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils. J Pharm Biomed Anal. 2011 Mar 25;54(4):653-9. doi: 10.1016/j.jpba.2010.10.006. Epub 2010 Oct 16.
5. Zhu D, Kwon S, Pignatello JJ: Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ Sci Technol. 2005 Jun 1;39(11):3990-8.
6. Lynch DW, Perone VB, Schuler RL, Ushry WB, Lewis TR: Acute toxicity of tetramethylbenzenes: durene, isodurene and prehnitene. Drug Chem Toxicol. 1978;1(3):219-30.
7. Zhang Q, He L, Liu JM, Wang W, Zhang J, Su CY: Pd2L2 metallacycles as molecular containers for small molecules. Dalton Trans. 2010 Dec 14;39(46):11171-9. doi: 10.1039/c0dt00406e. Epub 2010 Oct 21.
8. Hwang DH, Park MJ, Eom JH, Shim HK, Lee S, Yang NG, Lian D, Suh MC, Chin BD: Synthesis of a new polymeric host material for efficient organic electro-phosphorescent devices. J Nanosci Nanotechnol. 2008 Sep;8(9):4649-52.
9. Zou RQ, Bu XH, Zhang RH: Novel eclipsed 2D cadmium(II) coordination polymers with open-channel structure constructed from terephthalate and 3-(2-pyridyl)pyrazole: crystal structures, emission properties, and inclusion of guest molecules. Inorg Chem. 2004 Aug 23;43(17):5382-6.
10. Kralj P, Zupan M, Stavber S: Remarkable effect of water on functionalization of the phenyl ring in methyl-substituted benzene derivatives with F-TEDA-BF4. J Org Chem. 2006 May 12;71(10):3880-8.
11. Bellows D, Gingras E, Aly SM, Abd-El-Aziz AS, Leclerc M, Harvey PD: Organometallic and conjugated organic polymers held together by strong electrostatic interactions to form luminescent hybrid materials. Inorg Chem. 2008 Dec 15;47(24):11720-33. doi: 10.1021/ic801461j.
12. Pawlukojc A, Natkaniec I, Bator G, Sobczyk L, Grech E, Nowicka-Scheibe J: Low frequency internal modes of 1,2,4,5-tetramethylbenzene, tetramethylpyrazine and tetramethyl-1,4-benzoquinone INS, Raman, infrared and theoretical DFT studies. Spectrochim Acta A Mol Biomol Spectrosc. 2006 Mar 1;63(3):766-73. Epub 2005 Aug 10.
13. Berube JF, Gagnon K, Fortin D, Decken A, Harvey PD: Solution and solid-state properties of luminescent M-M bond-containing coordination/organometallic polymers using the RNC-M2(dppm)2-CNR building blocks (M = Pd, Pt; R = Aryl, Alkyl). Inorg Chem. 2006 Apr 3;45(7):2812-23.
14. Schneider CJ, Moubaraki B, Cashion JD, Turner DR, Leita BA, Batten SR, Murray KS: Spin crossover in di-, tri- and tetranuclear, mixed-ligand tris(pyrazolyl)methane iron(II) complexes. Dalton Trans. 2011 Jul 14;40(26):6939-51. doi: 10.1039/c0dt01725f. Epub 2011 Jun 6.
15. Jalowiecki P, Janasik B: Physiologically-based toxicokinetic modeling of durene (1,2,3,5-tetramethylbenzene) and isodurene (1,2,4,5-tetramethylbenzene) in humans. Int J Occup Med Environ Health. 2007;20(2):155-65.
16. Muranaka A, Shibahara M, Watanabe M, Matsumoto T, Shinmyozu T, Kobayashi N: Optical resolution, absolute configuration, and chiroptical properties of three-layered [3.3]paracyclophane. J Org Chem. 2008 Nov 21;73(22):9125-8. doi: 10.1021/jo801441h. Epub 2008 Oct 21.
17. Torrisi A, Mellot-Draznieks C, Bell RG: Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring. J Chem Phys. 2009 May 21;130(19):194703. doi: 10.1063/1.3120909.
18. Nelsen SF, Konradsson AE, Weaver MN, Stephenson RM, Lockard JV, Zink JI, Zhao Y: Comparisons of measured rate constants with spectroscopically determined electron-transfer parameters. J Phys Chem B. 2007 Jun 21;111(24):6776-81. Epub 2007 Mar 24.
19. Mohapatra H, Umapathy S: Influence of solvent on photoinduced electron-transfer reaction: time-resolved resonance Raman study. J Phys Chem A. 2009 Jun 25;113(25):6904-9. doi: 10.1021/jp903973q.