Record Information
Version1.0
Creation Date2016-05-27 01:10:12 UTC
Update Date2016-11-09 01:22:23 UTC
Accession NumberCHEM041046
Identification
Common NameHypothiocyanite
ClassSmall Molecule
DescriptionA sulfur oxoacid that is sulfenic acid in which the hydrogen attached to the sulfur has been replaced by a cyano group.
Contaminant Sources
  • FooDB Chemicals
Contaminant TypeNot Available
Chemical Structure
Thumb
Synonyms
ValueSource
(Hydroxysulfanyl)formonitrileChEBI
Cyanosulfoxylic acidChEBI
Hypocyanous acidChEBI
(Hydroxysulphanyl)formonitrileGenerator
CyanosulfoxylateGenerator
CyanosulphoxylateGenerator
Cyanosulphoxylic acidGenerator
N,6-didehydro-3,6-dihydro-3-Methyl-adenosineHMDB
OSCN-hypothiocyanite ionHMDB
Hypothiocyanite ionMeSH, HMDB
HypothiocyaniteChEBI
Chemical FormulaCHNOS
Average Molecular Mass75.090 g/mol
Monoisotopic Mass74.978 g/mol
CAS Registry Number63296-34-4
IUPAC Name(hydroxysulfanyl)formonitrile
Traditional Namecyanosulfoxylic acid
SMILESOSC#N
InChI IdentifierInChI=1S/CHNOS/c2-1-4-3/h3H
InChI KeyZCZCOXLLICTZAH-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as thiocyanates. These are salts or esters of thiocyanic acid, with the general formula RSC#N (R=alkyl, aryl).
KingdomOrganic compounds
Super ClassOrganosulfur compounds
ClassThiocyanates
Sub ClassNot Available
Direct ParentThiocyanates
Alternative Parents
Substituents
  • Sulfenyl compound
  • So-thioperoxol
  • Thiocyanate
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Organonitrogen compound
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginNot Available
Cellular LocationsNot Available
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateNot Available
AppearanceNot Available
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
PropertyValueSource
Water Solubility48.2 g/LALOGPS
logP-0.93ALOGPS
logP0.35ChemAxon
logS-0.19ALOGPS
pKa (Strongest Acidic)11.97ChemAxon
pKa (Strongest Basic)-4.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area44.02 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity17.01 m³·mol⁻¹ChemAxon
Polarizability5.93 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00di-9000000000-cbb88d0f0c22744d614aSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-9000000000-f7a7bcf898c44fd7a75dSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-004i-9000000000-12711117650ea7527312Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-004i-9000000000-023113a0379555c51690Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00fr-9000000000-e6b998396d2c5773b445Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00fr-9000000000-b35bd047c03698b19d5cSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00di-9000000000-ed0388cc4e8680d3e19fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-9000000000-131cb52af4ee79a0ed7fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-004i-9000000000-131cb52af4ee79a0ed7fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0002-9000000000-e010d396dd95ce012f8dSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00di-9000000000-b1d947606d8698ba4a8bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00di-9000000000-b1d947606d8698ba4a8bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00di-9000000000-b1d947606d8698ba4a8bSpectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Not Available
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB0012974
FooDB IDFDB029228
Phenol Explorer IDNot Available
KNApSAcK IDNot Available
BiGG IDNot Available
BioCyc IDNot Available
METLIN IDNot Available
PDB IDNot Available
Wikipedia LinkHypothiocyanite
Chemspider ID111270
ChEBI ID133907
PubChem Compound ID124985
Kegg Compound IDNot Available
YMDB IDNot Available
ECMDB IDNot Available
References
Synthesis ReferenceNot Available
MSDSNot Available
General References
1. https://www.ncbi.nlm.nih.gov/pubmed/?term=19705807
2. https://www.ncbi.nlm.nih.gov/pubmed/?term=19821602
3. https://www.ncbi.nlm.nih.gov/pubmed/?term=22031955
4. https://www.ncbi.nlm.nih.gov/pubmed/?term=22053976
5. https://www.ncbi.nlm.nih.gov/pubmed/?term=23088652
6. https://www.ncbi.nlm.nih.gov/pubmed/?term=23540488
7. https://www.ncbi.nlm.nih.gov/pubmed/?term=24112082
8. https://www.ncbi.nlm.nih.gov/pubmed/?term=24120969
9. https://www.ncbi.nlm.nih.gov/pubmed/?term=24632382
10. https://www.ncbi.nlm.nih.gov/pubmed/?term=24657078
11. https://www.ncbi.nlm.nih.gov/pubmed/?term=24928513
12. https://www.ncbi.nlm.nih.gov/pubmed/?term=25172223
13. https://www.ncbi.nlm.nih.gov/pubmed/?term=25309750
14. https://www.ncbi.nlm.nih.gov/pubmed/?term=25393952
15. https://www.ncbi.nlm.nih.gov/pubmed/?term=25795019
16. https://www.ncbi.nlm.nih.gov/pubmed/?term=26453918
17. https://www.ncbi.nlm.nih.gov/pubmed/?term=26608498
18. https://www.ncbi.nlm.nih.gov/pubmed/?term=26616646
19. https://www.ncbi.nlm.nih.gov/pubmed/?term=26898502
20. https://www.ncbi.nlm.nih.gov/pubmed/?term=27013775
21. https://www.ncbi.nlm.nih.gov/pubmed/?term=27343172
22. https://www.ncbi.nlm.nih.gov/pubmed/?term=27350402
23. https://www.ncbi.nlm.nih.gov/pubmed/?term=27629563
24. https://www.ncbi.nlm.nih.gov/pubmed/?term=27864363
25. Lemma K, Ashby MT: Reactive sulfur species: kinetics and mechanism of the reaction of hypothiocyanous acid with cyanide to give dicyanosulfide in aqueous solution. Chem Res Toxicol. 2009 Sep;22(9):1622-8. doi: 10.1021/tx900212r.
26. Kalmar J, Woldegiorgis KL, Biri B, Ashby MT: Mechanism of decomposition of the human defense factor hypothiocyanite near physiological pH. J Am Chem Soc. 2011 Dec 14;133(49):19911-21. doi: 10.1021/ja2083152. Epub 2011 Nov 18.
27. Barrett TJ, Hawkins CL: Hypothiocyanous acid: benign or deadly? Chem Res Toxicol. 2012 Feb 20;25(2):263-73. doi: 10.1021/tx200219s. Epub 2011 Nov 21.
28. Cegolon L, Salata C, Piccoli E, Juarez V, Palu' G, Mastrangelo G, Calistri A: In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus. Int J Hyg Environ Health. 2014 Jan;217(1):17-22. doi: 10.1016/j.ijheh.2013.03.001. Epub 2013 Mar 14.
29. Talib J, Kwan J, Suryo Rahmanto A, Witting PK, Davies MJ: The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochem J. 2014 Jan 1;457(1):89-97. doi: 10.1042/BJ20131135.
30. Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL: Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radic Biol Med. 2013 Dec;65:1352-62. doi: 10.1016/j.freeradbiomed.2013.10.007. Epub 2013 Oct 10.
31. Rayner BS, Love DT, Hawkins CL: Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med. 2014 Jun;71:240-55. doi: 10.1016/j.freeradbiomed.2014.03.004. Epub 2014 Mar 13.
32. Seidel A, Parker H, Turner R, Dickerhof N, Khalilova IS, Wilbanks SM, Kettle AJ, Jameson GN: Uric acid and thiocyanate as competing substrates of lactoperoxidase. J Biol Chem. 2014 Aug 8;289(32):21937-49. doi: 10.1074/jbc.M113.544957. Epub 2014 Jun 13.
33. Bonifay V, Barrett TJ, Pattison DI, Davies MJ, Hawkins CL, Ashby MT: Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants. Arch Biochem Biophys. 2014 Dec 15;564:1-11. doi: 10.1016/j.abb.2014.08.014. Epub 2014 Aug 27.
34. Bafort F, Parisi O, Perraudin JP, Jijakli MH: Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res. 2014;2014:517164. doi: 10.1155/2014/517164. Epub 2014 Sep 16.
35. Fabrini R, Bocedi A, Camerini S, Fusetti M, Ottaviani F, Passali FM, Topazio D, Iavarone F, Francia I, Castagnola M, Ricci G: Inactivation of human salivary glutathione transferase P1-1 by hypothiocyanite: a post-translational control system in search of a role. PLoS One. 2014 Nov 13;9(11):e112797. doi: 10.1371/journal.pone.0112797. eCollection 2014.
36. Gingerich A, Pang L, Hanson J, Dlugolenski D, Streich R, Lafontaine ER, Nagy T, Tripp RA, Rada B: Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus. Inflamm Res. 2016 Jan;65(1):71-80. doi: 10.1007/s00011-015-0892-z. Epub 2015 Nov 25.
37. Cook NL, Moeke CH, Fantoni LI, Pattison DI, Davies MJ: The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues. Free Radic Biol Med. 2016 Jan;90:195-205. doi: 10.1016/j.freeradbiomed.2015.11.025. Epub 2015 Nov 23.
38. Schlorke D, Flemmig J, Gau J, Furtmuller PG, Obinger C, Arnhold J: New insights into thiocyanate oxidation by human myeloperoxidase. J Inorg Biochem. 2016 Sep;162:117-126. doi: 10.1016/j.jinorgbio.2016.06.019. Epub 2016 Jun 15.
39. Suzuki S, Ogawa M, Ohta S, Nunomura S, Nanri Y, Shiraishi H, Mitamura Y, Yoshihara T, Lee JJ, Izuhara K: Induction of Airway Allergic Inflammation by Hypothiocyanite via Epithelial Cells. J Biol Chem. 2016 Dec 30;291(53):27219-27227. doi: 10.1074/jbc.M116.746909. Epub 2016 Nov 18.