You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Database of hazardous chemicals.
Record Information
Creation Date2016-05-26 01:32:13 UTC
Update Date2016-11-09 01:18:58 UTC
Accession NumberCHEM029946
Common Name(+)-3-Thujone
ClassSmall Molecule
Contaminant Sources
  • FooDB Chemicals
Contaminant TypeNot Available
Chemical Structure
beta-Thujone, 1S-(1alpha,4beta,5alpha)-isomerMeSH
alpha, beta-ThujoneMeSH
beta-Thujone, (1S-(1alpha,4alpha,5alpha))-isomerMeSH
beta-Thujone, (1alpha,4alpha,5alpha)-isomerMeSH
Chemical FormulaC10H16O
Average Molecular Mass152.233 g/mol
Monoisotopic Mass152.120 g/mol
CAS Registry Number471-15-8
IUPAC Name(1S,4S,5R)-4-methyl-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-one
Traditional Name(+)-β-thujone
InChI IdentifierInChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m0/s1
Chemical Taxonomy
Description belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassMonoterpenoids
Direct ParentBicyclic monoterpenoids
Alternative Parents
  • Bicyclic monoterpenoid
  • Thujane monoterpenoid
  • Cyclic ketone
  • Ketone
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginNot Available
Cellular LocationsNot Available
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateNot Available
AppearanceNot Available
Experimental Properties
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
Water Solubility0.44 g/LALOGPS
pKa (Strongest Basic)-7.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity44.54 m³·mol⁻¹ChemAxon
Polarizability18.02 ųChemAxon
Number of Rings2ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MSsplash10-00ou-9300000000-5ac67463cc6dff4e26c5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-e5a1ab6ee8fcd2e7222dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-7900000000-e4ab468ffb3afaf16129View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0pe9-9000000000-960a6c7d4901afec9233View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udi-0900000000-07a82b9f8d15764ed904View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0udi-0900000000-65761ceb0d88aa809b6aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9500000000-4023ebf09d9995d37111View in MoNA
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Not Available
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Not Available
DrugBank IDNot Available
FooDB IDFDB014960
Phenol Explorer IDNot Available
KNApSAcK IDC00000836
BiGG IDNot Available
BioCyc IDNot Available
METLIN IDNot Available
PDB IDNot Available
Wikipedia LinkNot Available
Chemspider ID82583
ChEBI ID50045
PubChem Compound ID91456
Kegg Compound IDC20260
YMDB IDNot Available
ECMDB IDNot Available
Synthesis ReferenceNot Available
MSDSNot Available
General References
1. Jug-Dujakovic M, Ristic M, Pljevljakusic D, Dajic-Stevanovic Z, Liber Z, Hancevic K, Radic T, Satovic Z: High diversity of indigenous populations of dalmatian sage (Salvia officinalis L.) in essential-oil composition. Chem Biodivers. 2012 Oct;9(10):2309-23. doi: 10.1002/cbdv.201200131.
2. Walch SG, Lachenmeier DW, Kuballa T, Stuhlinger W, Monakhova YB: Holistic Control of Herbal Teas and Tinctures Based on Sage (Salvia officinalis L.) for Compounds with Beneficial and Adverse Effects using NMR Spectroscopy. Anal Chem Insights. 2012;7:1-12. doi: 10.4137/ACI.S8946. Epub 2012 Mar 21.
3. Satyal P, Paudel P, Kafle A, Pokharel SK, Lamichhane B, Dosoky NS, Moriarity DM, Setzer WN: Bioactivities of volatile components from Nepalese Artemisia species. Nat Prod Commun. 2012 Dec;7(12):1651-8.
4. Rice KC, Wilson RS: (-)-3-Isothujone, a small nonnitrogenous molecule with antinociceptive activity in mice. J Med Chem. 1976 Aug;19(8):1054-7.
5. Wise ML, Savage TJ, Katahira E, Croteau R: Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J Biol Chem. 1998 Jun 12;273(24):14891-9.
6. Haider SZ, Andola HC, Mohan M: Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A Source of Artemisia Ketone. Indian J Pharm Sci. 2012 May;74(3):265-7. doi: 10.4103/0250-474X.106074.
7. Santos-Gomes PC, Fernandes-Ferreira M: Essential oils produced by in vitro shoots of sage (Salvia officinalis L.). J Agric Food Chem. 2003 Apr 9;51(8):2260-6.
8. Dehal SS, Croteau R: Metabolism of monoterpenes: specificity of the dehydrogenases responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone. Arch Biochem Biophys. 1987 Oct;258(1):287-91.
9. Kolassa N: Menthol differs from other terpenic essential oil constituents. Regul Toxicol Pharmacol. 2013 Feb;65(1):115-8. doi: 10.1016/j.yrtph.2012.11.009. Epub 2012 Dec 1.
10. Tayade AB, Dhar P, Kumar J, Sharma M, Chauhan RS, Chaurasia OP, Srivastava RB: Chemometric profile of root extracts of Rhodiola imbricata Edgew. with hyphenated gas chromatography mass spectrometric technique. PLoS One. 2013;8(1):e52797. doi: 10.1371/journal.pone.0052797. Epub 2013 Jan 10.
11. Raut JS, Shinde RB, Chauhan NM, Karuppayil SM: Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling. 2013;29(1):87-96. doi: 10.1080/08927014.2012.749398.
12. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9.
13. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10.
14. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20.
15. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
16. Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.
17. The lipid handbook with CD-ROM