Record Information
Version1.0
Creation Date2016-05-25 18:09:28 UTC
Update Date2016-11-09 01:17:20 UTC
Accession NumberCHEM021662
Identification
Common Name3,4-Dihydroxybenzeneacetic acid
ClassSmall Molecule
DescriptionA deaminated metabolite of levodopa. [PubChem]
Contaminant Sources
  • FooDB Chemicals
  • HMDB Contaminants - Feces
  • HMDB Contaminants - Urine
Contaminant TypeNot Available
Chemical Structure
Thumb
Synonyms
ValueSource
2-(3,4-DIHYDROXYPHENYL)acetIC ACIDChEBI
3,4-Dihydroxyphenyl acetic acidChEBI
3,4-Dihydroxyphenylacetic acidChEBI
Dopacetic acidChEBI
HomoprotocatechuateKegg
2-(3,4-DIHYDROXYPHENYL)acetateGenerator
3,4-Dihydroxyphenyl acetateGenerator
3,4-DihydroxyphenylacetateGenerator
DopacetateGenerator
3,4-DihydroxybenzeneacetateGenerator
3,4 Dihydroxyphenylacetic acidHMDB
3,4-Dihydroxyphenylacetic acid, monosodium saltHMDB
(3,4-Dihydroxyphenyl)-acetic acidHMDB
(3,4-Dihydroxyphenyl)acetateHMDB
(3,4-Dihydroxyphenyl)acetic acidHMDB
3,4-DHPOPHMDB
3,4-Dihydroxy-benzeneacetic acidHMDB
3,4-Dihydroxy-phenylacetic acidHMDB
DHYHMDB
DihydroxyphenylacetateHMDB
Dihydroxyphenylacetic acidHMDB
HAAHMDB
Homogentisic acidHMDB
3',4'-Dihydroxyphenylacetic acidHMDB
Chemical FormulaC8H8O4
Average Molecular Mass168.147 g/mol
Monoisotopic Mass168.042 g/mol
CAS Registry Number102-32-9
IUPAC Name2-(3,4-dihydroxyphenyl)acetic acid
Traditional Name3,4 dihydroxyphenylacetic acid
SMILESOC(=O)CC1=CC(O)=C(O)C=C1
InChI IdentifierInChI=1S/C8H8O4/c9-6-2-1-5(3-7(6)10)4-8(11)12/h1-3,9-10H,4H2,(H,11,12)
InChI KeyCFFZDZCDUFSOFZ-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub ClassBenzenediols
Direct ParentCatechols
Alternative Parents
Substituents
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Monocyclic benzene moiety
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginNot Available
Cellular LocationsNot Available
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateNot Available
AppearanceNot Available
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
PropertyValueSource
Water Solubility7.23 g/LALOGPS
logP0.93ALOGPS
logP1ChemAxon
logS-1.4ALOGPS
pKa (Strongest Acidic)3.61ChemAxon
pKa (Strongest Basic)-6.3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area77.76 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity41.33 m³·mol⁻¹ChemAxon
Polarizability15.71 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-004i-0942000000-54f714e694a7c3daeaf4Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-004i-0931000000-c4bb79d921fb42cf1b40Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-00di-9310000000-9490bd0ec921894341f4Spectrum
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-004i-0952000000-d45a1420d6ae61cb9169Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-004i-0942000000-54f714e694a7c3daeaf4Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-004i-0931000000-c4bb79d921fb42cf1b40Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9310000000-9490bd0ec921894341f4Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-004i-0952000000-d45a1420d6ae61cb9169Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-004i-0931000000-3fab9c521f7f85372b94Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00di-3900000000-9badffe195f5e0ba98e0Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (3 TMS) - 70eV, Positivesplash10-014i-4093000000-178e6eeb94df071e6c15Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-014i-0900000000-709dd9faccdbbb3dc088Spectrum
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9100000000-cf69597350b36ab34199Spectrum
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-9200000000-298c198dac69afd9b0a3Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-014i-0900000000-ace1596cdfcf99646e9fSpectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-00di-0900000000-e7f718ad00bdba667583Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-00di-1900000000-d8334a99b44e227f0c59Spectrum
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-01b9-1900000000-72071b19a4bfa3da409dSpectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00di-0900000000-3e7377f36ca2547f4885Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00di-2900000000-60e1fc55d54131c2923eSpectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0fi0-9400000000-c63542b296bac95866e2Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-01b9-0900000000-a59d2cab0d3d859760a7Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00xs-1900000000-6f630370c11294562cb7Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9800000000-a45be46f3b52664dd4d1Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-01b9-0900000000-a59d2cab0d3d859760a7Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00xs-1900000000-6f630370c11294562cb7Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9800000000-a45be46f3b52664dd4d1Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00di-0900000000-aec26fe78ab78ddd4021Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00dj-2900000000-e59402b8b36f408fbe1cSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00r6-9400000000-f36bad25ade880ae2e1fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-579796710abc38249c3aSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-0900000000-22f8a4f4efd0f10804b5Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zmi-9700000000-42b3de6bccbc10ad7b48Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-579796710abc38249c3aSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-0900000000-22f8a4f4efd0f10804b5Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zmi-9700000000-42b3de6bccbc10ad7b48Spectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
1D NMR1H NMR SpectrumNot AvailableSpectrum
1D NMR13C NMR SpectrumNot AvailableSpectrum
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableSpectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Not Available
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Concentrations
Not Available
DrugBank IDDB01702
HMDB IDHMDB0001336
FooDB IDFDB000316
Phenol Explorer ID572
KNApSAcK IDC00040996
BiGG ID36946
BioCyc IDCPD-782
METLIN ID6170
PDB IDNot Available
Wikipedia LinkDOPAC
Chemspider ID532
ChEBI ID41941
PubChem Compound ID547
Kegg Compound IDC01161
YMDB IDNot Available
ECMDB IDECMDB01336
References
Synthesis ReferenceNot Available
MSDSNot Available
General References
1. Joray, Marcel; Breuninger, Manfred. Process for the preparation of phenolic compounds. PCT Int. Appl. (2007), 15pp.
2. Joray, Marcel; Breuninger, Manfred. Process for the preparation of phenolic compounds. PCT Int. Appl. (2007), 15pp.
3. Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65.
4. Braestrup C: Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. J Pharm Pharmacol. 1977 Aug;29(8):463-70.
5. Nakao N, Shintani-Mizushima A, Kakishita K, Itakura T: The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease. Exp Neurol. 2004 Jul;188(1):65-73.
6. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7.
7. Annunziato LA, Wuerthele SM, Moore KE: Comparative effects of penfluridol on circling behavior and striatal DOPAC and serum prolactin concentrations in the rat. Eur J Pharmacol. 1978 Aug 1;50(3):187-92.
8. De Simoni MG, Guardabasso V, Misterek K, Algeri S: Similarities and differences between D-ALA2 MET5 enkephalin amide and morphine in the induction of tolerance to their effects on catalepsy and on dopamine metabolism in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1982 Nov;321(2):105-11.
9. Panholzer TJ, Beyer J, Lichtwald K: Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine. Clin Chem. 1999 Feb;45(2):262-8.
10. Van Loon GR, De Souza EB, Kim C: Alterations in brain dopamine and serotonin metabolism during the development of tolerance to human beta-endorphin in rats. Can J Physiol Pharmacol. 1978 Dec;56(6):1067-71.
11. Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8.
12. Gramsch C, Blasig J, Herz A: Changes in striatal dopamine metabolism during precipitated morphine withdrawal. Eur J Pharmacol. 1977 Aug 1;44(3):231-40.
13. Fornstedt B, Brun A, Rosengren E, Carlsson A: The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect. 1989;1(4):279-95.
14. Garrett MC, Soares-da-Silva P: Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington's disease: evidence for an overactive dopaminergic brain transmission. J Neurochem. 1992 Jan;58(1):101-6.
15. Massotti M, Longo VG: Role of the dopaminergic system in the cataleptogenic action of bulbocapnine. J Pharm Pharmacol. 1979 Oct;31(10):691-5.
16. Tekes K, Tothfalusi L, Gaal J, Magyar K: Effect of MAO inhibitors on the uptake and metabolism of dopamine in rat and human brain. Pol J Pharmacol Pharm. 1988 Nov-Dec;40(6):653-8.
17. Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK: Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell. 1997 Sep 19;90(6):991-1001.
18. Goldstein DS, Eisenhofer G, Kopin IJ: Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003 Jun;305(3):800-11. Epub 2003 Mar 20.
19. Hutson PH, Curzon G: Dopamine metabolites in rat cisternal cerebrospinal fluid: major contribution from extrastriatal dopamine neurones. J Neurochem. 1986 Jan;46(1):186-90.
20. Ebinger G, Michotte Y, Herregodts P: The significance of homovanillic acid and 3,4-dihydroxyphenylacetic acid concentrations in human lumbar cerebrospinal fluid. J Neurochem. 1987 Jun;48(6):1725-9.
21. Thurmond JB, Brown JW: Effect of brain monoamine precursors on stress-induced behavioral and neurochemical changes in aged mice. Brain Res. 1984 Mar 26;296(1):93-102.
22. Kogan BM, Tkachenko AA, Drozdov AZ, Andrianova EP, Filatova TS, Man'kovskaia IV, Kovaleva IA: [Monoamine metabolism in different forms of paraphilias]. Zh Nevrol Psikhiatr Im S S Korsakova. 1995;95(6):52-6.
23. Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA: Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology. 2007 Jan;28(1):76-82. Epub 2006 Aug 1.
24. Jiang H, Jiang Q, Liu W, Feng J: Parkin suppresses the expression of monoamine oxidases. J Biol Chem. 2006 Mar 31;281(13):8591-9. Epub 2006 Feb 2.
25. Cadet JL, Ali SF, Rothman RB, Epstein CJ: Neurotoxicity, drugs and abuse, and the CuZn-superoxide dismutase transgenic mice. Mol Neurobiol. 1995 Aug-Dec;11(1-3):155-63.
26. Pestana M, Jardim H, Correia F, Vieira-Coelho MA, Soares-da-Silva P: Renal dopaminergic mechanisms in renal parenchymal diseases and hypertension. Nephrol Dial Transplant. 2001;16 Suppl 1:53-9.
27. Kim DH, Kim SY, Park SY, Han MJ: Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull. 1999 Jul;22(7):749-51.
28. Gao K, Xu A, Krul C, Venema K, Liu Y, Niu Y, Lu J, Bensoussan L, Seeram NP, Heber D, Henning SM: Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J Nutr. 2006 Jan;136(1):52-7.
29. Radkov AD, Moe LA: Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol. 2014 Jun;98(12):5363-74. doi: 10.1007/s00253-014-5726-3. Epub 2014 Apr 22.
30. Publications of the University of Eastern Finland. Dissertations in Health Sciences., no 510
31. https://www.ncbi.nlm.nih.gov/pubmed/?term=11251641
32. https://www.ncbi.nlm.nih.gov/pubmed/?term=11681538
33. https://www.ncbi.nlm.nih.gov/pubmed/?term=11868042
34. https://www.ncbi.nlm.nih.gov/pubmed/?term=15212971
35. https://www.ncbi.nlm.nih.gov/pubmed/?term=15862791
36. https://www.ncbi.nlm.nih.gov/pubmed/?term=18706927
37. https://www.ncbi.nlm.nih.gov/pubmed/?term=19191673
38. https://www.ncbi.nlm.nih.gov/pubmed/?term=22770225
39. https://www.ncbi.nlm.nih.gov/pubmed/?term=4420192