Record Information
Version1.0
Creation Date2016-05-19 02:28:25 UTC
Update Date2016-11-09 01:13:38 UTC
Accession NumberCHEM007637
Identification
Common Name4,5,6,7-TETRAHYDRO-3,6-DIMETHYLBENZOFURAN
ClassSmall Molecule
DescriptionA monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6.
Contaminant Sources
  • EAFUS Chemicals
  • FooDB Chemicals
  • ToxCast & Tox21 Chemicals
Contaminant TypeNot Available
Chemical Structure
Thumb
Synonyms
ValueSource
3,9-Epoxy-p-mentha-3,8-dieneChEBI
4,5,6,7-Tetrahydro-3,6-dimethylbenzofuranChEBI
4,5,6,7-Tetrahydro-3,6-dimethylcoumaroneChEBI
(+)-3,9-Epoxy-P-mentha-3,8-dieneHMDB
(+)-MenthofuranHMDB
(6R)-3,6-Dimethyl-4,5,6,7-tetrahydro-1-benzofuranHMDB
(R)-(+)-MenthofuranHMDB
(R)-4,5,6,7-tetrahydro-3,6-DimethylbenzofuranHMDB
3,6-Dimethyl-4,5,6,7-tetrahydro-1-benzofuranHMDB
3,9-Epoxy-(+)-P-mentha-3,8-dieneHMDB
4,5,6,7-tetrahydro-3,6-Dimethyl-(R)-benzofuranHMDB
4,5,6,7-tetrahydro-3,6-Dimethyl-benzofuranHMDB
MenthofuranHMDB
Menthofuran, (R)-isomerMeSH, HMDB
Chemical FormulaC10H14O
Average Molecular Mass150.218 g/mol
Monoisotopic Mass150.104 g/mol
CAS Registry Number494-90-6
IUPAC Name3,6-dimethyl-4,5,6,7-tetrahydro-1-benzofuran
Traditional Name3,9-epoxy-p-mentha-3,8-diene
SMILESCC1CCC2=C(C1)OC=C2C
InChI IdentifierInChI=1S/C10H14O/c1-7-3-4-9-8(2)6-11-10(9)5-7/h6-7H,3-5H2,1-2H3
InChI KeyYGWKXXYGDYYFJU-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassMonoterpenoids
Direct ParentAromatic monoterpenoids
Alternative Parents
Substituents
  • Menthofuran monoterpenoid
  • Bicyclic monoterpenoid
  • Aromatic monoterpenoid
  • Benzofuran
  • Heteroaromatic compound
  • Furan
  • Oxacycle
  • Organoheterocyclic compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginNot Available
Cellular LocationsNot Available
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateNot Available
AppearanceNot Available
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.073 g/LALOGPS
logP3.98ALOGPS
logP3.13ChemAxon
logS-3.3ALOGPS
pKa (Strongest Basic)-1.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area13.14 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity45.67 m³·mol⁻¹ChemAxon
Polarizability18.04 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-4900000000-ad7d24da86fd955477a7Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-4900000000-ad7d24da86fd955477a7Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0pi9-1900000000-c7d34068fe20520e5e88Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-295d2c3abad7c8ff4f63Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-3900000000-5e060ac38ef1d423776fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0gb9-9100000000-30417e50d66ad0fe9af6Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-295d2c3abad7c8ff4f63Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-3900000000-5e060ac38ef1d423776fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0gb9-9100000000-30417e50d66ad0fe9af6Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0900000000-881d258a03659e0f3930Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0900000000-01ff41b309657177e5e5Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-066r-3900000000-177076fd487978d174f1Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0900000000-881d258a03659e0f3930Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0900000000-01ff41b309657177e5e5Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-066r-3900000000-177076fd487978d174f1Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-1900000000-a36c450a85a702daacb3Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0zfs-9800000000-283087fbd503dd386078Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-002f-9100000000-bb914f0c52d327a80b1bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0900000000-22917433edc8ad9dbc2eSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0900000000-8ae160b4249f862d1a00Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-05ne-7900000000-12e4673f2e9f1e3c406dSpectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Not Available
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB0036089
FooDB IDFDB014927
Phenol Explorer IDNot Available
KNApSAcK IDC00003049
BiGG IDNot Available
BioCyc IDNot Available
METLIN IDNot Available
PDB IDNot Available
Wikipedia LinkMenthofuran
Chemspider ID292309
ChEBI ID50542
PubChem Compound ID329983
Kegg Compound IDC09868
YMDB IDNot Available
ECMDB IDNot Available
References
Synthesis ReferenceNot Available
MSDSNot Available
General References
1. https://www.ncbi.nlm.nih.gov/pubmed/?term=18044925
2. https://www.ncbi.nlm.nih.gov/pubmed/?term=23199997
3. https://www.ncbi.nlm.nih.gov/pubmed/?term=24050256
4. Miyazawa M, Haigou R: Determination of cytochrome P450 enzymes involved in the metabolism of (-)-terpinen-4-ol by human liver microsomes. Xenobiotica. 2011 Dec;41(12):1056-62. doi: 10.3109/00498254.2011.596230.
5. Thomassen D, Slattery JT, Nelson SD: Contribution of menthofuran to the hepatotoxicity of pulegone: assessment based on matched area under the curve and on matched time course. J Pharmacol Exp Ther. 1988 Mar;244(3):825-9.
6. Yu S, Chen Y, Zhang L, Shan M, Tang Y, Ding A: Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepeta tenuifolia at different harvesting times. Int J Mol Sci. 2011;12(10):6635-44. doi: 10.3390/ijms12106635. Epub 2011 Oct 10.
7. Chen LJ, Lebetkin EH, Burka LT: Metabolism of (R)-(+)-menthofuran in Fischer-344 rats: identification of sulfonic acid metabolites. Drug Metab Dispos. 2003 Oct;31(10):1208-13.
8. Stephens ES, Walsh AA, Scott EE: Evaluation of inhibition selectivity for human cytochrome P450 2A enzymes. Drug Metab Dispos. 2012 Sep;40(9):1797-802. doi: 10.1124/dmd.112.045161. Epub 2012 Jun 13.
9. Miyazawa M, Marumoto S, Takahashi T, Nakahashi H, Haigou R, Nakanishi K: Metabolism of (+)- and (-)-menthols by CYP2A6 in human liver microsomes. J Oleo Sci. 2011;60(3):127-32.
10. Khojasteh-Bakht SC, Nelson SD, Atkins WM: Glutathione S-transferase catalyzes the isomerization of (R)-2-hydroxymenthofuran to mintlactones. Arch Biochem Biophys. 1999 Oct 1;370(1):59-65.
11. Haigou R, Miyazawa M: Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes. J Oleo Sci. 2012;61(1):35-43.
12. Atsbaha Zebelo S, Bertea CM, Bossi S, Occhipinti A, Gnavi G, Maffei ME: Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. PLoS One. 2011 Mar 9;6(3):e17195. doi: 10.1371/journal.pone.0017195.
13. Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB: Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16944-9. doi: 10.1073/pnas.1111558108. Epub 2011 Sep 30.
14. Khojasteh-Bakht SC, Koenigs LL, Peter RM, Trager WF, Nelson SD: (R)-(+)-Menthofuran is a potent, mechanism-based inactivator of human liver cytochrome P450 2A6. Drug Metab Dispos. 1998 Jul;26(7):701-4.
15. Khojasteh-Bakht SC, Chen W, Koenigs LL, Peter RM, Nelson SD: Metabolism of (R)-(+)-pulegone and (R)-(+)-menthofuran by human liver cytochrome P-450s: evidence for formation of a furan epoxide. Drug Metab Dispos. 1999 May;27(5):574-80.
16. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9.
17. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10.
18. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20.
19. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
20. Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.
21. The lipid handbook with CD-ROM