Record Information
Version1.0
Creation Date2014-09-11 02:05:26 UTC
Update Date2016-11-09 01:09:11 UTC
Accession NumberCHEM003655
Identification
Common NameIron
ClassSmall Molecule
DescriptionA metallic element found in certain minerals, in nearly all soils, and in mineral waters. It is an essential constituent of hemoglobin, cytochrome, and other components of respiratory enzyme systems. Its chief functions are in the transport of oxygen to tissue (hemoglobin) and in cellular oxidation mechanisms. Depletion of iron stores may result in iron-deficiency anemia. Iron is used to build up the blood in anemia.
Contaminant Sources
  • EAFUS Chemicals
  • FooDB Chemicals
  • HMDB Contaminants - Urine
  • HPV EPA Chemicals
  • IARC Carcinogens Group 2B
  • T3DB toxins
Contaminant Type
  • Anti-Anemic Agent
  • Drug
  • Food Toxin
  • Household Toxin
  • Inorganic Compound
  • Metabolite
  • Metal
  • Supplement
  • Synthetic Compound
  • Trace Element
Chemical Structure
Thumb
Synonyms
ValueSource
FE (II) ionChEBI
Fe(II)ChEBI
Fe2+ChEBI
Fe(2+)ChEBI
Ferrous ionChEBI
Iron ion(2+)ChEBI
Iron(2+)Kegg
Armco ironHMDB
Carbonyl ironHMDB
FEHMDB
Ferrovac eHMDB
HematiteHMDB
InfedHMDB
LimoniteHMDB
LOHAHMDB
MagnetiteHMDB
Malleable ironHMDB
MetopironeHMDB
MetyraponeHMDB
PZH2mHMDB
PZHOHMDB
RemkoHMDB
Suy-b 2HMDB
TaconiteHMDB
VenoferHMDB
Wrought ironHMDB
Iron hydroxide (fe(OH)3)MeSH, HMDB
Iron oxyhydroxideMeSH, HMDB
Ferric hydroxideMeSH, HMDB
Iron hydroxide (III)MeSH, HMDB
Chemical FormulaFe
Average Molecular Mass55.845 g/mol
Monoisotopic Mass55.935 g/mol
CAS Registry Number7439-89-6
IUPAC Namelambda2-iron(2+) ion
Traditional Namelambda2-iron(2+) ion
SMILES[Fe]
InChI IdentifierInChI=1S/Fe
InChI KeyXEEYBQQBJWHFJM-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as homogeneous transition metal compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a transition metal atom.
KingdomInorganic compounds
Super ClassHomogeneous metal compounds
ClassHomogeneous transition metal compounds
Sub ClassNot Available
Direct ParentHomogeneous transition metal compounds
Alternative ParentsNot Available
Substituents
  • Homogeneous transition metal
Molecular FrameworkNot Available
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point1538°C
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
PropertyValueSource
logP-0.77ChemAxon
pKa (Strongest Acidic)4.58ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity0 m³·mol⁻¹ChemAxon
Polarizability1.78 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-9000000000-af3e7aec4f5bd9668683Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-9000000000-af3e7aec4f5bd9668683Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9000000000-af3e7aec4f5bd9668683Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udi-9000000000-3335fec4c3184739b75eSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0udi-9000000000-3335fec4c3184739b75eSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0udi-9000000000-3335fec4c3184739b75eSpectrum
Toxicity Profile
Route of ExposureThe efficiency of absorption depends on the salt form, the amount administered, the dosing regimen and the size of iron stores. Subjects with normal iron stores absorb 10% to 35% of an iron dose. Those who are iron deficient may absorb up to 95% of an iron dose.
Mechanism of ToxicityIron is necessary for the production of hemoglobin. Iron-deficiency can lead to decreased production of hemoglobin and a microcytic, hypochromic anemia.
MetabolismNot Available
Toxicity ValuesIn a young child, 75 milligrams per kilogram is considered extremely dangerous. A dose of 30 milligrams per kilogram can lead to symptoms of toxicity. A peak serum iron concentration of five micrograms or more per ml is associated with moderate to severe poisoning in many.
Lethal DoseEstimates of a lethal dosage range from 180 milligrams per kilogram and upwards.
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesUsed in preventing and treating iron-deficiency anemia.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB0015531
FooDB IDFDB030855
Phenol Explorer IDNot Available
KNApSAcK IDNot Available
BiGG ID33552
BioCyc IDFE%2b2
METLIN IDNot Available
PDB IDFE2
Wikipedia LinkIron
Chemspider ID25394
ChEBI ID29033
PubChem Compound ID27284
Kegg Compound IDC14818
YMDB IDYMDB00379
ECMDB IDECMDB00692
References
Synthesis Reference

Walter Lugscheider, Paul Mullner, Wilhelm Schiffer, Alois Leutgob, “Arrangement for producing metals, such as molten pig iron, steel pre-material and ferroalloys.” U.S. Patent US4617671, issued 0000.

MSDSLink
General References
1. Gaucheron F: Milk and dairy products: a unique micronutrient combination. J Am Coll Nutr. 2011 Oct;30(5 Suppl 1):400S-9S.
2. Semaghiul Birghila, Simona Dobrinas, Gabriela Stanciu and Alina Soceanu. Determination of major and minor elements in milk through ICP-AES. Environmental Engineering and Management Journal. November/December 2008, Vol.7, No.6, 805-808
3. Park, Y. W; Juárez, Manuela ; Ramos, M.; Haenlein, G. F. W.. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res.(2007) 68:88-113 doi: 10.1016/j.smallrumres.2006.09.013
4. A. Foroutan et al. The Chemical Composition of Commercial Cow's Milk (in preparation)
5. Patricia Cava-Montesinos, M. Luisa Cervera Agustín Pastor Miguel de la Guardia. 2005. Room temperature acid sonication ICP-MS multielemental analysis of milk.Analytica Chimica Acta Volume 531, Issue 1, Pages 111-123
6. Š. ZAMBERLIN et al.: Mineral elements in milk and dairy products, Mljekarstvo 62 (2), 111-125
7. Sola-Larrañaga C., Navarro-Blasco I. 2009. Chemometric analysis of minerals and trace elements in raw cow milk from the community of Navarra, Spain. Volume 112, Issue 1, Pages 189-196
8. USDA Food Composition Databases: https://ndb.nal.usda.gov/ndb/
9. Fooddata+, The Technical University of Denmark (DTU): https://frida.fooddata.dk/QueryFood.php?fn=milk&lang=en