You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Database of hazardous chemicals.
Record Information
Creation Date2014-09-08 02:38:13 UTC
Update Date2016-11-09 01:09:10 UTC
Accession NumberCHEM003585
Common Name3-Amino-1-methyl-5H-pyrido [4,3-b]indole
ClassSmall Molecule
Description3-Amino-1-methyl-5H-pyrido[4,3-b]indole Acetate is a dietary carcinogens derived from cooked foods. It can induce moderate apoptosis as measured by morphological changes in nuclear chromatin and internucleosomal DNA fragmentation.
Contaminant Sources
  • FooDB Chemicals
  • IARC Carcinogens Group 2B
  • T3DB toxins
  • Tobacco Smoke Compounds
Contaminant Type
  • Cigarette Toxin
  • Food Toxin
  • Metabolite
  • Natural Compound
  • Organic Compound
Chemical Structure
1-Methyl-5H-pyrido[3,4-b]indol-1-amine, 9ciHMDB
Tryptophan P2HMDB
Tryptophan pyrolysis product IIHMDB
Trytophan pyrolysate 2HMDB
Tryptophan pyrolysateHMDB
Tryptophan pyrolysis product 2HMDB
Chemical FormulaC12H11N3
Average Molecular Mass197.236 g/mol
Monoisotopic Mass197.095 g/mol
CAS Registry Number62450-07-1
IUPAC Name1-methyl-5H-pyrido[4,3-b]indol-3-amine
Traditional Name1-methyl-5H-pyrido[4,3-b]indol-3-amine
InChI IdentifierInChI=1S/C12H11N3/c1-7-12-8-4-2-3-5-9(8)15-10(12)6-11(13)14-7/h2-6,15H,1H3,(H2,13,14)
Chemical Taxonomy
Description belongs to the class of organic compounds known as gamma carbolines. These are polycyclic aromatic compounds containing a gamma-carbazole(5H-pyrido[4,3-b]indole) moiety, with a structure characterized by the presence of pyridine fused to the pyrrole ring of an indole.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassIndoles and derivatives
Sub ClassPyridoindoles
Direct ParentGamma carbolines
Alternative Parents
  • Gamma-carboline
  • Indole
  • Pyrrolopyridine
  • Aminopyridine
  • Methylpyridine
  • Imidolactam
  • Benzenoid
  • Pyridine
  • Heteroaromatic compound
  • Pyrrole
  • Azacycle
  • Hydrocarbon derivative
  • Primary amine
  • Organonitrogen compound
  • Amine
  • Organic nitrogen compound
  • Organopnictogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Microsome
Biofluid LocationsNot Available
Tissue LocationsNot Available
QuinolinesNot AvailableNot Available
ApoptosisNot Availablemap04210
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
AppearanceWhite powder.
Experimental Properties
Melting Point242 - 247 °C
Boiling PointNot Available
SolubilityNot Available
Predicted Properties
Water Solubility0.14 g/LALOGPS
pKa (Strongest Acidic)13.09ChemAxon
pKa (Strongest Basic)9.69ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area54.7 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity60.92 m³·mol⁻¹ChemAxon
Polarizability21.82 ųChemAxon
Number of Rings3ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MSsplash10-0002-0900000000-c023c3277c709a0628faView in MoNA
GC-MSGC-MS Spectrum - EI-Bsplash10-0002-3900000000-8ba44f186f86b672eda5View in MoNA
GC-MSGC-MS Spectrum - EI-Bsplash10-0002-3900000000-8ba44f186f86b672eda5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-0900000000-8c1ba829e5497870011bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0002-0900000000-c01ed14fcd7efcce22aaView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0kai-0900000000-b076010a26f7e599a957View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-1900000000-d9e6c66d929e6e00785aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0900000000-861d27c1dfaaea2b88b7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-6900000000-f58db98e4dc8860c9a3eView in MoNA
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)2B, possibly carcinogenic to humans. (16)
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Not Available
DrugBank IDNot Available
FooDB IDFDB011200
Phenol Explorer IDNot Available
KNApSAcK IDNot Available
BiGG IDNot Available
BioCyc IDNot Available
METLIN IDNot Available
PDB IDNot Available
Wikipedia LinkNot Available
Chemspider ID4447540
ChEBI IDNot Available
PubChem Compound ID5284476
Kegg Compound IDC14416
YMDB IDNot Available
ECMDB IDNot Available
Synthesis ReferenceNot Available
MSDSNot Available
General References
1. Schindl R, Fritsch R, Jardin I, Frischauf I, Kahr H, Muik M, Riedl MC, Groschner K, Romanin C: Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. J Biol Chem. 2012 Oct 12;287(42):35612-20. doi: 10.1074/jbc.M112.400952. Epub 2012 Aug 29.
2. Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, De Smedt H: Unraveling the role of polycystin-2/inositol 1,4,5-trisphosphate receptor interaction in Ca signaling. Commun Integr Biol. 2010 Nov;3(6):530-2. doi: 10.4161/cib.3.6.12751. Epub 2010 Nov 1.
3. Zhu J, Yu Y, Ulbrich MH, Li MH, Isacoff EY, Honig B, Yang J: Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10133-8. doi: 10.1073/pnas.1017669108. Epub 2011 Jun 3.
4. Du J, Wong WY, Sun L, Huang Y, Yao X: Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J Am Soc Nephrol. 2012 Jul;23(7):1172-80. doi: 10.1681/ASN.2011100972. Epub 2012 Apr 19.
5. Cantero Mdel R, Cantiello HF: Effect of lithium on the electrical properties of polycystin-2 (TRPP2). Eur Biophys J. 2011 Sep;40(9):1029-42. doi: 10.1007/s00249-011-0715-2. Epub 2011 Jun 16.
6. Hofherr A, Kottgen M: TRPP channels and polycystins. Adv Exp Med Biol. 2011;704:287-313. doi: 10.1007/978-94-007-0265-3_16.
7. Feng S, Rodat-Despoix L, Delmas P, Ong AC: A single amino acid residue constitutes the third dimerization domain essential for the assembly and function of the tetrameric polycystin-2 (TRPP2) channel. J Biol Chem. 2011 May 27;286(21):18994-9000. doi: 10.1074/jbc.M110.192286. Epub 2011 Apr 7.
8. Kottgen M, Hofherr A, Li W, Chu K, Cook S, Montell C, Watnick T: Drosophila sperm swim backwards in the female reproductive tract and are activated via TRPP2 ion channels. PLoS One. 2011;6(5):e20031. doi: 10.1371/journal.pone.0020031. Epub 2011 May 20.
9. Gilliam JC, Wensel TG: TRP channel gene expression in the mouse retina. Vision Res. 2011 Dec 8;51(23-24):2440-52. doi: 10.1016/j.visres.2011.10.009. Epub 2011 Oct 20.
10. Berrout J, Jin M, O'Neil RG: Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res. 2012 Feb 3;1436:1-12. doi: 10.1016/j.brainres.2011.11.044. Epub 2011 Dec 1.
11. Hoffmeister H, Babinger K, Gurster S, Cedzich A, Meese C, Schadendorf K, Osten L, de Vries U, Rascle A, Witzgall R: Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. J Cell Biol. 2011 Feb 21;192(4):631-45. doi: 10.1083/jcb.201007050. Epub 2011 Feb 14.
12. Dong HW, Davis JC, Ding S, Nai Q, Zhou FM, Ennis M: Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb. Neurosci Lett. 2012 Aug 22;524(1):49-54. doi: 10.1016/j.neulet.2012.07.013. Epub 2012 Jul 20.
13. Spirli C, Locatelli L, Fiorotto R, Morell CM, Fabris L, Pozzan T, Strazzabosco M: Altered store operated calcium entry increases cyclic 3',5'-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology. 2012 Mar;55(3):856-68. doi: 10.1002/hep.24723.
14. Holzer P: Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther. 2011 Jul;131(1):142-70. doi: 10.1016/j.pharmthera.2011.03.006. Epub 2011 Mar 21.
15. Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.